A month ago or so, I wrote a post about installing TensorFlow 1.1.0 on Jetson TX1. This post is an update for 1.2.0 which has one additional issue on top of the ones discussed previously. The problem is that Eigen is missing some template specializations when used on ARM. The bug has been fixed, but you need to make the TensorFlow build use the fixed version.

diff --git a/tensorflow/workspace.bzl b/tensorflow/workspace.bzl
index 2a206b0ac..f44a17405 100644
--- a/tensorflow/workspace.bzl
+++ b/tensorflow/workspace.bzl
@@ -150,11 +150,10 @@ def tf_workspace(path_prefix="", tf_repo_name=""):
   native.new_http_archive(
       name = "eigen_archive",
       urls = [
-          "http://mirror.bazel.build/bitbucket.org/eigen/eigen/get/f3a22f35b044.tar.gz",
-          "https://bitbucket.org/eigen/eigen/get/f3a22f35b044.tar.gz",
+          "https://bitbucket.org/eigen/eigen/get/d781c1de9834.tar.gz",
       ],
-      sha256 = "ca7beac153d4059c02c8fc59816c82d54ea47fe58365e8aded4082ded0b820c4",
-      strip_prefix = "eigen-eigen-f3a22f35b044",
+      sha256 = "a34b208da6ec18fa8da963369e166e4a368612c14d956dd2f9d7072904675d9b",
+      strip_prefix = "eigen-eigen-d781c1de9834",
       build_file = str(Label("//third_party:eigen.BUILD")),
   )

The build instructions are the same as for the previous versions, but you need to checkout the v1.2.0-jetson-tx1 tag from my repository to get all the fixes.

If you like this kind of content, you can subscribe to my newsletter, follow me on Twitter, or subscribe to my RSS channel.